Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 11(24): 5390-5399, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37219363

RESUMO

In this perspective, we outline a new opportunity for exploiting nanoparticle delivery of antagonists to target G-protein coupled receptors localized in intracellular compartments. We discuss the specific example of antagonizing endosomal receptors involved in pain to develop long-lasting analgesics but also outline the broader application potential of this delivery approach. We discuss the materials used to target endosomal receptors and indicate the design requirements for future successful applications.


Assuntos
Endossomos , Nanomedicina , Animais , Humanos , Endossomos/química , Nanomedicina/métodos , Nanopartículas/química , Polímeros/química , Concentração de Íons de Hidrogênio , Sistemas de Liberação de Medicamentos
2.
Biomaterials ; 285: 121536, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35533442

RESUMO

Soft polymer nanoparticles designed to disassemble and release an antagonist of the neurokinin 1 receptor (NK1R) in endosomes provide efficacious yet transient relief from chronic pain. These micellar nanoparticles are unstable and rapidly release cargo, which may limit the duration of analgesia. We examined the efficacy of stable star polymer nanostars containing the NK1R antagonist aprepitant-amine for the treatment of chronic pain in mice. Nanostars continually released cargo for 24 h, trafficked through the endosomal system, and disrupted NK1R endosomal signaling. After intrathecal injection, nanostars accumulated in endosomes of spinal neurons. Nanostar-aprepitant reversed mechanical, thermal and cold allodynia and normalized nociceptive behavior more efficaciously than free aprepitant in preclinical models of neuropathic and inflammatory pain. Analgesia was maintained for >10 h. The sustained endosomal delivery of antagonists from slow-release nanostars provides effective and long-lasting reversal of chronic pain.


Assuntos
Dor Crônica , Antagonistas dos Receptores de Neurocinina-1 , Animais , Aprepitanto/farmacologia , Aprepitanto/uso terapêutico , Dor Crônica/tratamento farmacológico , Endossomos , Camundongos , Antagonistas dos Receptores de Neurocinina-1/farmacologia , Antagonistas dos Receptores de Neurocinina-1/uso terapêutico , Polímeros/farmacologia
3.
Drug Deliv Transl Res ; 11(4): 1586-1597, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33713317

RESUMO

Infections caused by fungal biofilms with rapidly evolving resistance against the available antifungal agents are difficult to manage. These difficulties demand new strategies for effective eradication of biofilms from both biological and inert surfaces. In this study, polymeric micelles comprised of di-block polymer, poly-(ethylene glycol) methyl ether methacrylate and poly 2-(N,N-diethylamino) ethyl methacrylate polymer, P(PEGMA-b-DEAEMA), were observed to exhibit remarkable inhibitory effects on hyphal growth of Candida albicans (C. albicans) and C. tropicalis, thus preventing biofilm formation and removing existing biofilms. P(PEGMA-b-DEAEMA) micelles showed biofilm removal efficacy of > 40% and a 1.4-log reduction in cell viability of C. albicans in its single-species biofilms. In addition, micelles alone promoted high removal percentage in a mixed biofilm of C. albicans and C. tropicalis (~ 70%) and remarkably reduced cell viability of both strains. Co-delivery of fluconazole (Flu) and amphotericin B (AmB) with micelles showed synergistic effects on C. albicans biofilms (3-log reduction for AmB and 2.2-log reduction for Flu). Similar effects were noted on C. albicans planktonic cells when treated with the micellar system combined with AmB but not with Flu. Moreover, micelle-drug combinations showed an enhancement in the antibiofilm activity of Flu and AmB against dual-species biofilms. Furthermore, in vivo studies using Caenorhabditis elegans nematodes revealed no obvious toxicity of the micelles. Targeting morphologic transitions provides a new strategy for defeating fungal biofilms of polymorphic resistance strains and can be potentially used in counteracting Candida virulence.


Assuntos
Candida albicans , Micelas , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Biofilmes , Fluconazol/farmacologia , Virulência
4.
J Mater Chem B ; 8(8): 1672-1681, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32016213

RESUMO

Candida albicans (C. albicans) is a common fungal pathogen causing both localised and systemic infections. The majority of these infections are promoted by biofilm formation, providing a protective matrix for the embedded fungi thereby evading the host immune defence and promoting resistance against anti-mycotic agents. In this study, pH-responsive micellar systems based on poly-(ethylene glycol) ethyl ether methacrylate (PEGMA) and poly 2-(diethylamino) ethyl methacrylate (DEAEMA) block-copolymers of P(PEGMA-b-DEAEMA) were specifically developed and loaded with the antifungal itraconazole (ICZ) to defeat C. albicans biofilms. The P(PEGMA-b-DEAEMA) di-block polymer micelles demonstrated a particle size of 55 ± 6 nm and high ICZ loads (12.0 ± 0.5% w/w). Within the biofilm's acidic microenvironment, tertiary amines of the pH-sensitive DEAEMA block are protonated, altering their conformation and enhancing the release of the micellar contents. Encapsulation of ICZ within micelles significantly enhanced the activity against C. albicans biofilms, with a significant reduction in the biofilm biomass (>50%) and in the number of viable cells (2.4 Log reduction) achieved, compared with the non-encapsulated ICZ. Confocal microscopy revealed a high affinity and accumulation of the micelles in C. albicans biofilms as a result of their size and specific electrostatic interaction, hence their improved activity. P(PEGMA-b-DEAEMA) based pH-responsive micelles offer significant potential as antifungal carriers for controlling Candida infections.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/fisiologia , Portadores de Fármacos/química , Itraconazol/química , Micelas , Antifúngicos/química , Antifúngicos/metabolismo , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Itraconazol/metabolismo , Itraconazol/farmacologia , Metacrilatos/química , Microscopia Confocal , Oxazinas/química , Oxazinas/metabolismo , Tamanho da Partícula , Polietilenoglicóis/química
5.
Front Mol Neurosci ; 12: 273, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798411

RESUMO

Peripheral and central neurons in the pain pathway are well equipped to detect and respond to extracellular stimuli such as pro-inflammatory mediators and neurotransmitters through the cell surface expression of receptors that can mediate rapid intracellular signaling. Following injury or infection, activation of cell surface G protein-coupled receptors (GPCRs) initiates cell signaling processes that lead to the generation of action potentials in neurons or inflammatory responses such as cytokine secretion by immune cells. However, it is now appreciated that cell surface events alone may not be sufficient for all receptors to generate their complete signaling repertoire. Following an initial wave of signaling at the cell surface, active GPCRs can engage with endocytic proteins such as the adaptor protein ß-arrestin (ßArr) to promote clathrin-mediated internalization. Classically, ßArr-mediated internalization of GPCRs was hypothesized to terminate signaling, yet for multiple GPCRs known to contribute to pain, it has been demonstrated that endocytosis can also promote a unique "second wave" of signaling from intracellular membranes, including those of endosomes and the Golgi, that is spatiotemporally distinct from initial cell-surface events. In the context of pain, understanding the cellular and molecular mechanisms that drive spatiotemporal signaling of GPCRs is invaluable for understanding how pain occurs and persists, and how current analgesics achieve efficacy or promote side-effects. This review article discusses the importance of receptor localization for signaling outcomes of pro- and anti-nociceptive GPCRs, and new analgesic opportunities emerging through the development of "location-biased" ligands that favor binding with intracellular GPCR populations.

6.
Nat Nanotechnol ; 14(12): 1150-1159, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31686009

RESUMO

Nanoparticle-mediated drug delivery is especially useful for targets within endosomes because of the endosomal transport mechanisms of many nanomedicines within cells. Here, we report the design of a pH-responsive, soft polymeric nanoparticle for the targeting of acidified endosomes to precisely inhibit endosomal signalling events leading to chronic pain. In chronic pain, the substance P (SP) neurokinin 1 receptor (NK1R) redistributes from the plasma membrane to acidified endosomes, where it signals to maintain pain. Therefore, the NK1R in endosomes provides an important target for pain relief. The pH-responsive nanoparticles enter cells by clathrin- and dynamin-dependent endocytosis and accumulate in NK1R-containing endosomes. Following intrathecal injection into rodents, the nanoparticles, containing the FDA-approved NK1R antagonist aprepitant, inhibit SP-induced activation of spinal neurons and thus prevent pain transmission. Treatment with the nanoparticles leads to complete and persistent relief from nociceptive, inflammatory and neuropathic nociception and offers a much-needed non-opioid treatment option for chronic pain.


Assuntos
Aprepitanto/administração & dosagem , Dor Crônica/tratamento farmacológico , Preparações de Ação Retardada/metabolismo , Nanopartículas/metabolismo , Antagonistas dos Receptores de Neurocinina-1/administração & dosagem , Animais , Aprepitanto/farmacocinética , Aprepitanto/uso terapêutico , Linhagem Celular , Dor Crônica/metabolismo , Sistemas de Liberação de Medicamentos , Endossomos/metabolismo , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Masculino , Camundongos Endogâmicos C57BL , Antagonistas dos Receptores de Neurocinina-1/farmacocinética , Antagonistas dos Receptores de Neurocinina-1/uso terapêutico , Ratos , Receptores da Neurocinina-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...